Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Am J Respir Crit Care Med ; 2023 May 08.
Article in English | MEDLINE | ID: covidwho-2314950

ABSTRACT

RATIONALE: Mesenchymal stromal cells (MSCs) may modulate inflammation, promoting repair in COVID-19-related Acute Respiratory Distress Syndrome (ARDS). OBJECTIVES: We investigated safety and efficacy of ORBCEL-C (CD362-enriched, umbilical cord-derived MSCs) in COVID-related ARDS. METHODS: This multicentre, randomised, double-blind, allocation concealed, placebo-controlled trial (NCT03042143) randomised patients with moderate-to-severe COVID-related ARDS to receive ORBCEL-C (400million cells) or placebo (Plasma-Lyte148). MEASUREMENTS: The primary safety and efficacy outcomes were incidence of serious adverse events and oxygenation index at day 7 respectively. Secondary outcomes included respiratory compliance, driving pressure, PaO2/FiO2 ratio and SOFA score. Clinical outcomes relating to duration of ventilation, length of intensive care unit and hospital stays, and mortality were collected. Long-term follow up included diagnosis of interstitial lung disease at 1 year, and significant medical events and mortality at 2 years. Transcriptomic analysis was performed on whole blood at day 0, 4 and 7. MAIN RESULTS: 60 participants were recruited (final analysis n=30 ORBCEL-C, n=29 placebo: 1 in placebo group withdrew consent). 6 serious adverse events occurred in the ORBCEL-C and 3 in the placebo group, RR 2.9(0.6-13.2)p=0.25. Day 7 mean[SD] oxygenation index did not differ (ORBCEL-C 98.357.2], placebo 96.667.3). There were no differences in secondary surrogate outcomes, nor mortality at day 28, day 90, 1 or 2 years. There was no difference in prevalence of interstitial lung disease at 1year nor significant medical events up to 2 years. ORBCEL-C modulated the peripheral blood transcriptome. CONCLUSION: ORBCEL-C MSCs were safe in moderate-to-severe COVID-related ARDS, but did not improve surrogates of pulmonary organ dysfunction. Clinical trial registration available at www. CLINICALTRIALS: gov, ID: NCT03042143. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

2.
Thromb J ; 19(1): 87, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1518279

ABSTRACT

The prevalence of venous thromboembolism (VTE) is high in critically ill patients with COVID-19. Dosing of Low Molecular Weight Heparin (LMWH) for thromboprophylaxis in patients with severe COVID-19 is subject to ongoing debate.In this brief report, we describe our study where we retrospectively examined the efficacy of standard- versus intermediate-dosing of enoxaparin in attaining and maintaining accepted prophylactic levels of anti-Factor Xa (anti-FXa) in critically ill patients with COVID-19.We collected data for all patients with confirmed COVID-19 who were treated with enoxaparin for thromboprophylaxis in a single Intensive Care Unit (ICU) in the United Kingdom between 31st March and 16th November 2020. Standard-dose of enoxaparin was 40 mg subcutaneously once daily for patients with normal renal function and body weight between 50 and 100 kg; the intermediate-dose was 40 mg subcutaneously twice daily. Anti-FXa peak concentrations between 0.2-0.4 IU/ml were considered appropriate for thromboprophylaxis.Age, sex, weight, Body Mass Index, APACHE II score, ICU length of stay, initial P/F ratio and creatinine were not statistically significantly different between standard- and intermediate-dose thromboprophylaxis cohorts. In the standard-dose group, the median initial anti-FXa level was 0.13 (interquartile range 0.06-0.18) compared to 0.26 (0.21-0.33) in the intermediate-dose cohort (p < 0.001). On repeated measurement, in the standard dose cohort, 44 of 95 (46%) anti-FXa levels were < 0.2 IU/ml compared with 24 of 132 (18%) levels in the intermediate-dose cohort even after dose-adjustment. There was one radiologically confirmed pulmonary embolism (PE) on computed tomography pulmonary angiogram during hospital admission in each cohort.Our study supports starting intermediate-dose thromboprophylaxis for critically ill patients with COVID-19 to achieve anti-FXa levels in the accepted thromboprophylactic range although further study is required to investigate whether anti-FXa guided thromboprophylaxis is safe and effective in reducing the incidence of VTEs in critically ill patients with COVID-19.

3.
Intensive Care Med ; 47(5): 549-565, 2021 05.
Article in English | MEDLINE | ID: covidwho-1222758

ABSTRACT

PURPOSE: The trajectory of mechanically ventilated patients with coronavirus disease 2019 (COVID-19) is essential for clinical decisions, yet the focus so far has been on admission characteristics without consideration of the dynamic course of the disease in the context of applied therapeutic interventions. METHODS: We included adult patients undergoing invasive mechanical ventilation (IMV) within 48 h of intensive care unit (ICU) admission with complete clinical data until ICU death or discharge. We examined the importance of factors associated with disease progression over the first week, implementation and responsiveness to interventions used in acute respiratory distress syndrome (ARDS), and ICU outcome. We used machine learning (ML) and Explainable Artificial Intelligence (XAI) methods to characterise the evolution of clinical parameters and our ICU data visualisation tool is available as a web-based widget ( https://www.CovidUK.ICU ). RESULTS: Data for 633 adults with COVID-19 who underwent IMV between 01 March 2020 and 31 August 2020 were analysed. Overall mortality was 43.3% and highest with non-resolution of hypoxaemia [60.4% vs17.6%; P < 0.001; median PaO2/FiO2 on the day of death was 12.3(8.9-18.4) kPa] and non-response to proning (69.5% vs.31.1%; P < 0.001). Two ML models using weeklong data demonstrated an increased predictive accuracy for mortality compared to admission data (74.5% and 76.3% vs 60%, respectively). XAI models highlighted the increasing importance, over the first week, of PaO2/FiO2 in predicting mortality. Prone positioning improved oxygenation only in 45% of patients. A higher peak pressure (OR 1.42[1.06-1.91]; P < 0.05), raised respiratory component (OR 1.71[ 1.17-2.5]; P < 0.01) and cardiovascular component (OR 1.36 [1.04-1.75]; P < 0.05) of the sequential organ failure assessment (SOFA) score and raised lactate (OR 1.33 [0.99-1.79]; P = 0.057) immediately prior to application of prone positioning were associated with lack of oxygenation response. Prone positioning was not applied to 76% of patients with moderate hypoxemia and 45% of those with severe hypoxemia and patients who died without receiving proning interventions had more missed opportunities for prone intervention [7 (3-15.5) versus 2 (0-6); P < 0.001]. Despite the severity of gas exchange deficit, most patients received lung-protective ventilation with tidal volumes less than 8 mL/kg and plateau pressures less than 30cmH2O. This was despite systematic errors in measurement of height and derived ideal body weight. CONCLUSIONS: Refractory hypoxaemia remains a major association with mortality, yet evidence based ARDS interventions, in particular prone positioning, were not implemented and had delayed application with an associated reduced responsiveness. Real-time service evaluation techniques offer opportunities to assess the delivery of care and improve protocolised implementation of evidence-based ARDS interventions, which might be associated with improvements in survival.


Subject(s)
COVID-19 , Respiration, Artificial , Adult , Artificial Intelligence , Humans , Prone Position , SARS-CoV-2 , United Kingdom
4.
Thromb Haemost ; 120(12): 1654-1667, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-998022

ABSTRACT

COVID-19 was first described in late 2019 and has since developed into a pandemic affecting more than 21 million people worldwide. Of particular relevance for acute care is the occurrence of COVID-19-associated coagulopathy (CAC), which is characterised by hypercoagulability, immunothrombosis and venous thromboembolism, and contributes to hypoxia in a significant proportion of patients. This review describes diagnosis and treatment of CAC in the emergency department and in intensive care. We summarise the pathological mechanisms and common complications of CAC such as pulmonary thrombosis and venous thromboembolic events and discuss current strategies for thromboprophylaxis and therapeutic anti-coagulation in the acute care setting.


Subject(s)
Anticoagulants/therapeutic use , COVID-19/diagnosis , Lung/pathology , SARS-CoV-2/physiology , Venous Thromboembolism/diagnosis , Animals , Biomarkers/metabolism , COVID-19/epidemiology , COVID-19/therapy , Critical Care , Hemostasis , Humans , Thrombophilia , Thrombosis , Venous Thromboembolism/epidemiology , Venous Thromboembolism/therapy
SELECTION OF CITATIONS
SEARCH DETAIL